人工智能机器学习常用算法总结及各个常用算法精确率对比
机器学习的知识树,这个图片是Github上的,有兴趣的可以自己去看一下: 地址:https://github.com/trekhleb/homemade-machine-learning 简单的翻译一下这个树: 英文 中文Machine Learning 机器学习 Supervised Learning 监督学习 Unsupervised Learning 非监督学习 Reinforcement Learning 强化学习 Neural Networks and Deep Learning 神经网络与深度学习 Ensemble Learning 集成学习 以下是一部分算法的概念和应用,仅供大家参考 监督学习监督学习可以看作是原先的预测模型,有基础的训练数据,再将需要预测的数据进行输入,得到预测的结果(不管是连续的还是离散的) 决策树(Decision Tree,DT)决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案。 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题。剪枝有两种: 先剪枝——在构造过程中,当某个节点满足剪枝条件,则直接停止此分支的构造。 后剪枝——先构造完成完整的决策树,再通过某些条件遍历树进行剪枝。 朴素贝叶斯分类器(Naive Bayesian Model,NBM)朴素贝叶斯分类器基于贝叶斯定理及其假设(即特征之间是独立的,是不相互影响的),主要用来解决分类和回归问题。 具体应用有: 标记一个电子邮件为垃圾邮件或非垃圾邮件; 将新闻文章分为技术类、政治类或体育类; 检查一段文字表达积极的情绪,或消极的情绪; 用于人脸识别软件。 学过概率的同学一定都知道贝叶斯定理,这个在250多年前发明的算法,在信息领域内有着无与伦比的地位。贝叶斯分类是一系列分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯算法(Naive Bayesian) 是其中应用最为广泛的分类算法之一。朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。 最小二乘法(Least squares)你可能听说过线性回归。最小均方就是用来求线性回归的。如下图所示,平面内会有一系列点,然后我们求取一条线,使得这条线尽可能拟合这些点分布,这就是线性回归。这条线有多种找法,最小二乘法就是其中一种。最小二乘法其原理如下,找到一条线使得平面内的所有点到这条线的欧式距离和最小。这条线就是我们要求取得线。 逻辑回归(Logistic Regression)逻辑回归模型是一个二分类模型,它选取不同的特征与权重来对样本进行概率分类,用一个log函数计算样本属于某一类的概率。即一个样本会有一定的概率属于一个类,会有一定的概率属于另一类,概率大的类即为样本所属类。用于估计某种事物的可能性。 支持向量机(Support Vector Machine)支持向量机(support vector machine)是一个二分类算法,它可以在N维空间找到一个(N-1)维的超平面,这个超平面可以将这些点分为两类。也就是说,平面内如果存在线性可分的两类点,SVM可以找到一条最优的直线将这些点分开。SVM应用范围很广。 要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好。 K最近邻算法(KNN,K-NearestNeighbor)邻近算法,或者说K最近邻(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。KNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近。如上图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。由此也说明了KNN算法的结果很大程度取决于K的选择。 集成学习(Ensemble Learning)集成学习就是将很多分类器集成在一起,每个分类器有不同的权重,将这些分类器的分类结果合并在一起,作为最终的分类结果。最初集成方法为贝叶斯决策。 (编辑:ASP站长网) |