人工智能与大数据会纠正我们的偏见,还是会更糟糕?(3)
纳拉亚南使用从Amazon Mechanical Turk(一种被形容为“人工人工智能”的服务平台)招募的群体劳动者来确定他的性别工作中的类别。同样这些劳动者还评估了哪些类别出现偏见,以及程序消除这些偏见的成功程度。换句话说,关于什么是有偏见的决定,以及偏见被消除意味着什么,仍然与社会共识中的中位值密切相关,给社会进步加上了民粹主义的制约。 还有更令人气馁的担忧。巴洛卡斯和克劳福德近期指出,大多数关于算法公平性的研究都集中在所谓的“分配型伤害”(allocative harm),涉及到资源的分配,比如前面提到的当日送达服务、判决中采用的风险评分等。他们呼吁更多地关注种族主义批评者如贝尔。胡克斯(bell hooks)等提出的“象征型伤害”(representational harm)。举例来说,在谷歌图片搜索中输入“CEO”(首席执行官),所得到的结果中绝大多数都是白人的头像。纳拉亚南表示,这些问题可能会在公平性讨论中被忽视,因为“它们在数学上更难以确切阐述,在计算机科学中,如果你无法用正式的术语来研究某些东西,那它的存在合理性就不如那些能够转化成方程或算法的东西。” 在最糟糕的情况下,我们在处理数据中的偏见时所遇到的这样或那样的限制,将使我们构建中的算法成为新一代的混凝土桥,使不合理的现状在未来许多年里一直延续。在最好的情况下,数据基础架构将迫使我们以某些从未有过的方式,揭露并面对我们对公平和决策的定义。 这种紧张状态很难与我们通常的技术进步观念相协调。人们很容易认为技术变化要比社会更快,并且软件可以通过迅速加入新的社会规范来促进社会进步,并隔离倒退或恶意行为者的影响。一个量刑算法能造成的伤害要比一个明显偏执的法官小得多。但是,技术也可能掩盖偏见的历史和背景,减缓甚至阻碍社会进步。基础设施很难改变,而机会也在逐渐减少:技术可以在未来改进,但我们正在决定需要做出哪些权衡。目前尚不清楚我们是否有机会重新审视这些权衡。 毕竟,算法变得越普遍,被取代的可能性就越低。虽然我们可能每两年就升级一次手机,但核心软件基础架构的改造依然面临很大障碍。考虑到渗透到我们生活中的过时技术已经非常多,例如空中交通管制系统主要依赖于20世纪70年代开发的软件。在2017年瘫痪了英国医院系统的“WannaCry”蠕虫病毒,利用的便是这样一个事实:这些系统是在几十年前的Windows版本上运行的,微软公司甚至已经不再提供维护。机器对语言的理解嵌入在核心服务中,可以在数年或数十年后依然呈现出今天的偏见。用艺术家Nicole Aptekar的话来说,“基础架构击败了意图。” 新的数字基础架构面临的最大危险并不是会腐朽,也不是容易受到攻击,而是其最糟糕的功能将继续存在。一旦大桥建起来,要拆掉就很难了。( (编辑:ASP站长网) |