做大数据分析研究的常用软件工具与其应用场景(2)
发布时间:2018-08-23 00:34 所属栏目:125 来源:51CTO.com
导读:前面介绍的各种大数据分析工具,可应对的数据都在亿级以下,也以结构化数据为主。当实际面临以下要求: 亿级以上/半实时性处理/非标准化复杂需求,通常就需要借助编程(甚至借助于Hadoop/Spark等分布式计算框架)来完
前面介绍的各种大数据分析工具,可应对的数据都在亿级以下,也以结构化数据为主。当实际面临以下要求: 亿级以上/半实时性处理/非标准化复杂需求,通常就需要借助编程(甚至借助于Hadoop/Spark等分布式计算框架)来完成相关的分析。 如果能掌握相关的编程语言能力,那研究员的分析能力将如虎添翼。 当前适合大数据处理的编程语言,包括: 前面的内容介绍了面向大数据研究的不同工具软件/语言的特点和适用场景。 这些工具能够极大增强研究员在大数据环境下的分析能力,但更重要的是研究员要发挥自身对业务的深入理解,从数据结果中洞察发现有深度的结果,这才是最有价值的。 (编辑:ASP站长网) |
相关内容
网友评论
推荐文章
热点阅读