AI时代:人人都要培养关于AIQ 的这几个技能(3)
第一种情况,当工作的一部分职能被自动化了之后,工作本身反而变得更重要了。这在PC时代就曾经出现过。比如Excel的出现让财务的话语权更大,而不是让更多会计师失业。同样,工作的一部分被自动化会让那些需要更多人判断的工作变得更重要也更有价值。 第二种情况,机器的确会替代一些工作。比如说亚马逊分拣仓里的分拣员。亚马逊的物流配送分拣仓雇佣了4万多人,因为人仍然比机器能更快地分拣货物。但是亚马逊也意识到,只要人在整个流程中存在,物流配送就无法完全自动化。亚马逊2012年收购机器人公司Kiva就是要向自动化迈出一大步。未来当机器完全取代人类分拣员之后,仓库就可以变成黑灯仓库,节约照明和空调的电费,而且可以24小时不停歇地工作,大大提升效率。 第三种情况,AI会重塑一些工作,取代一部分职能,同时增加另一部分智能。比如说放射科医生。放射科医生主要的工作是解读X光片或者CT影像。现在机器已经可以做得更好了。但这并不意味着放射科医生的工作会被替代。他们的工作会发生大的变化。一方面,他们仍然需要向其他医生解释AI得出的影响判断,另一方面为新机器的AI提供训练也是他们未来的工作之一。 第四种情况,则是一些工作的实质会发生改变。比如说,当自动驾驶被普遍应用之后,校车司机会失业么?乍一看下来答案是肯定了,因为车辆可以自动驾驶了,不再需要司机。但事实上校车司机还有一项很重要的职责,就是在车上维护秩序,确保孩子们的安全。所以,当司机开车的这项主要任务被AI取代之后,会凸显出另外一些重要的任务,比如说在校车上管理孩子。校车司机工作的实质发生了变化,但是并没有被取代。 当然,未来将会有更多“人+机器”的工作场景。在《人+机器》这本书中,身为埃森哲咨询师的作者就提出,人机协作在很多场景中会比人或者机器单独完成工作要更有效。《人+机器》把产业转型分成三个阶段,100多年前从福特开始的标准化流程的转型,1970年代开始的数字化转型,也就是利用IT技术的自动化转型,而现在这一阶段AI推动了人机协作的适应性转型阶段。标准化转型让批量大规模廉价生产成为可能,自动化转型通过流程优化和流程再造,让机器能够取代许多人的岗位,提升效率。适应性转型又有所不同,人+机器可以有很强的适应性,又可以根据实时的数据做应对,可以推出小批量定制化的服务。 人机协作还会带来一些有趣的变化。人和机器会相互学习,机器可以观察人的一些动作,提升自己的能力;人也需要学习并适应与机器一起工作。人机协作也能增强人的能力,机器(AI)将成为人体的延伸,就好像智能手机变成了人大脑的延伸,又好像医生使用手术机器人一样得心应手。人机协作,其实是解放人,让人在工作过程中能够从事更多人擅长的工作和人与人沟通交流的工作。 AI的未来和适应AI的下一代 MIT教授泰格马克在《生命3.0》的开篇就描述了一个超级智能“越狱”的烧脑剧情。泰格马克用一个形象的比喻来形容被人类控制的超级智能:就好像世界上所有五岁以上的人都死了,只留下你(超级智能)一个,你被一群幼儿园的孩子所禁锢,虽然他们仍然希望你能帮助他们重建家园。《生命3.0》是一本想象力丰富而逻辑推理严谨的著作,为AI大发展之后的人与机器的关系做出了一种宏大框架的分析。泰格马克对AI的前景充满乐观,属于相信通用人工智能(AGI,也就是能够超越人类智慧的机器智能)有可能在我们有生之年出现的乐观派。 但现在还不是担心机器何时或者是否会发展出AGI的时候,因为技术的变化还没有人能够做出准确的预期。相反,恰如DeepMind的创始人所说,我们不应该担心AI夺走人类的工作或者替代人类,我们应该担心的是如果没有AI,人类会变成什么样子? 有一个问题更迫切也更重要:AI的应用到底是会促进更多的中心化,还是去中心化? 一方面,从人类发展的历史上来看,科技的不断发展一直在不断推动人类的活动变得更加集中,从分散的部落、到帝国就是一个逐渐中心化的趋势。AI作为最新的通用技术,也一定会进一步推动中心化的趋势,AI让集中处理庞大的数据变得更容易、更便宜、更高效,也更能不断提升AI的智能,因为数据越多,机器学习的处理能力就越强大。但是另一方面,因为通讯的成本大大降低,普通人获取信息的成本大大降低,AI的发展也让每个人可以获取的知识足够多足够丰富,每个人有更强的判断力,每个人都可以被赋能。而当每个普通人能做出更好的决策的时候,他们的动力、灵活度和创新能力也最足。 无论是政府、企业还是社会组织,如果抽象分析下来,都是一种信息处理系统,AI带来的改变到底会促进信息系统更中心化,还是更分布式,将是AI给未来经济社会发展带来的最大变数。 改变已经产生。大数据和人工智能催生了大的高科技平台企业,现在美国的谷歌、脸书、亚马逊、苹果和微软,加上中国的阿里与腾讯,雄踞全球十大市值最大企业的七席,每一个都富可敌国,每一个都拥有海量的数据,恰如本文开头提到的《经济学人》封面所呈现的,这些公司是镀金时代的“新石油大亨”。 AI带来的中心化与分布式的辩论,放在企业发展的语境去讨论,就变成了对于七巨头和他们身后第二梯队的IT巨无霸们而言,AI的发展会加速它们的成长,从而让它们更加稳固自己的寡头地位,还是会让挑战巨头的颠覆力量此起彼伏,让创新得以不断持续? 目前看来,天平正在朝向巨头的一方。巨头IT平台企业已经构建了他们的版图,并且在自己核心业务周围构建了“杀戮地带”,瓜分天下的野心昭彰。不过如果AI技术领域能有所突破,比如在“已知的未知”领域,利用小数据样本就能培养出有效的AI,让大平台的大数据优势不再那么明显,未来的天平仍然可能转向分布式。 巨头的成长也形成了一套商业模式,值得注意。吴修铭(Tim Wu)在《注意力商人》(The Attention Merchants)中就曾经描述,巨头之所以能够为大众提供大量免费服务,是因为注意力经济的商业模式,巨头吸引到的用户眼球可以换取可观的广告费用,谷歌和脸书两家企业几乎瓜分了美国在线广告市场。AI的发展,让注意力经济快速迭代,相比眼球的商业价值,巨头所掌握的用户行为信息数据变得更重要也更值钱。 (编辑:ASP站长网) |