娱乐行业这块蛋糕,大数据该怎么吃(2)
对于有着较高关注度的明星演员而言,各平台的数据并不缺乏,基于媒体资讯和搜索评论数据,可以提取出大众对于演员形象的认知关键词。当然,选角更多还是由主创人员主观抉择,但对于演员的形象词分析可以提供辅助,特别是在拍续集时,对于角色形象突出的演员,可以适度加大戏份。 比如:郭采洁通过《小时代》颠覆了大众的认知,完美、华丽、霸气等关键词频频冒出,她所扮演的“顾里”也逐渐承担起了更重的戏份。 3)主演口碑评估 《小时代》主演众多,通过观众对于前几部电影中演员的评价,可以准确了解到观众的情感倾向。基于文本情感分析,可以看到,观众对于“简溪”的演员李悦铭的负面评价明显高于其他,那么在后续的电影中,可以直接考虑换演员或者删减这一角色的戏份。 4)设定哪些剧情 通过对之前剧情的分析,可以发掘出观众对于各类剧情的喜好程度,比如:基于数据可以发现,观众对圣诞夜、顾里生日宴会的互撕、顾源裸上身等情节关注度极高,那么后续可以继续加入更多“闺蜜疯闹”、“情感冲突”、“腐女”的情节元素。 5)受众是谁 数据的结果其实和大众的认知是一致的,,《小时代》的关注者以女性为主,她们大多是90后的原著粉,比较宅,喜欢音乐、影视、八卦等等,因此在进行营销的时候可以针对这些用户所活跃的视频网站、社交平台、新闻媒体进行宣传。 6)在哪里排片 排片量直接会影响到票房的成绩,《战狼2》就是个最好的例子,通过小镇青年带动了票房的增长。对于《小时代》而言,热议话题的发起者与参与者多为北上广和深圳、成都等一二线城市居民,因此,一二线城市是《小时代》的主要战场,那么在做宣传活动和排片的时候也要以一二线城市为主。 用什么吃? 方法都知道了,那这些数据是从哪儿来的呢,要用到哪些工具呢? 通过大数据进行娱乐行业的分析,最核心的方法自然是文本挖掘技术了。 大体来讲,文本挖掘所基于的数据源主要有四类: (1)行业中的票房和收视数据 这些数据很多票房榜单和中介销售平台都有,基于这些数据可以评估各个电影的卖座程度,当然,热卖指数的计算还需要考虑到时间和同期的其他电影票房。 通过对电影的关键词提取,可以形成一套标签库,将电影打上各类标签,那么基于决策树的思想,通过观众对电影的选择行为,可以分析出观众对于各类标签的偏好程度,从而指导主创人员根据观众的喜好进行创作或IP选择/改编。 (2)搜索数据 热搜可以很好地体现人们的关注度,对于热搜标签的提取和评估和上述的方法相同。除此以外,搜索数据还可以很好地支持IP的评估,通过建立多项指标进行聚类,可以对现有IP进行分类,提供IP选择的参考。 (3)媒体数据 媒体反映的是大众的关注焦点,同时也对大众的认知起着引导作用,将媒体数据进行摘要提取,可以了解到媒体的关注点,此外,在进行宣发营销时,同样可以借用媒体的力量酝酿发酵,那么在媒体的选择上需要先进行考量什么媒体的调性更适合,哪些媒体的受众人群和本剧相吻合。 在运用网络媒体进行传播时,还可以通过链接参数进行全流程跟踪,以此分析该媒体资讯是否有较强的裂变能力,从而考虑是否“加注”。 (5)评论数据 随着社会的发展,网民们越来越乐于吐露自己的心声,“键盘侠”们从天而降,裹着正义的披风大杀四方,没有人知道他们叫什么,他们身后留下的只有泛着唾沫星子的战场。 这么多的评论数据,当然需要进行提取分类,通过观点情感挖掘,了解他们的主要论点和倾向,一方面可以用于选角的评估或剧情的修改,另一方面,还可以在电影发布初期进行舆情监控,当发现不好势头的时候,及时进行公关引导,或在水军的大坝决堤之前,筑起高墙。 结语 这是一个“娱乐至死”的时代么? 大数据的方法好像只有迎合,但尼尔·波兹曼说: “有人说我取悦于人,我说这很好,如果一个教授上课时表现幽默,人们就会带着记忆下课”。 我们需要严肃文学的清高和深刻,但也需要娱乐文化的寓教于乐。创作者可以决定想表达什么,但你能说给多少人听,说给哪些人听,如何说给他们听,这也许是大数据能赋予的价值。 相关阅读: 十分钟了解大数据处理的五大关键技术及其应用 工业大数据:构建制造型企业新型能力 (编辑:ASP站长网) |