设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 大数据 > 正文

数据智能是大数据的未来(2)

发布时间:2018-11-20 20:03 所属栏目:125 来源:数据观
导读:以云服务方式提供AI服务已成为当前的趋势,AI云服务一般分为平台类服务和软件类服务。平台类服务包含GPU云服务,深度学习平台等,GPU云服务是以虚拟机的形式,为用户提供GPU计算资源。深度学习平台则是以TensorFlow

以云服务方式提供AI服务已成为当前的趋势,AI云服务一般分为平台类服务和软件类服务。平台类服务包含GPU云服务,深度学习平台等,GPU云服务是以虚拟机的形式,为用户提供GPU计算资源。深度学习平台则是以TensorFlow、Caffe、MXNet等主流深度学习软件框架为基础,提供相应的常用深度学习算法和模型,组合各种数据源、组件模块,让用户可以基于该平台对语音、文本、图片、视频等海量数据进行离线模型训练、在线模型预测及可视化模型评估。软件类服务包括提供API程序接口、SDK包、消息服务接口的形式提供AI相关的在线网络服务,可包括语音识别、文字处理、图像检测、智能推荐等应用方式。

掘金数据资产,探索数据智能

大数据为人工智能发展提供了基础资源,人工智能技术的核心就在于通过计算找寻大数据中的规律,对具体场景问题进行预测和判断。想要训练出成功的人工智能算法,需要运算力和大量的数据,其中最重要的就是数据量要足够大。除了数据量足够大,大数据还需要通过采集、清洗、标注等处理工作后才能够作为人工智能算法模型训练的输入,但目前在实际应用中,数据流通不畅、数据质量不高和数据安全风险等问题仍然极大制约着人工智能的发展和应用。

大数据的未来何去何从,与人工智能技术如何完美结合,共同驱动数字经济发展,数据智能或将成为新的热点和大趋势。

“数据智能”是百度公司在2014年提出的概念,百度对数据智能的定义,指基于大数据引擎,通过大规模机器学习和深度学习等技术,对海量数据进行处理、分析和挖掘,提取数据中所包含的有价值的信息和知识,使数据具有“智能”,并通过建立模型寻求现有问题的解决方案以及实现预测等。

2018年10月,第五届中国国际大数据大会上发布的《2018年数据智能生态报告》中提出,在机器学习、分布式计算等技术发展的基础上,数据逐渐呈现出高维度、高阶态、异构性的形式,把能够对海量数据进行分析、处理和挖掘,并且通过建模、工程等方式来解决实际预测问题,最终实现决策的行动,称之为数据智能。

对数据智能的信息化落地,业界一般称之为数据智能平台或数据中台。

据阿里巴巴公共数据平台负责人介绍,阿里巴巴数据中台战略在2015年首次提出,旨在对内提供数据基础建设和统一的数据服务,对外提供服务商家的统一化数据产品。阿里数据中台基于OneData体系建立的集团数据公共层,从设计、开发、部署和使用上保障了数据口径的规范和统一,实现数据资产全链路管理,并提供标准数据输出。基于阿里数据中台输出的生意参谋产品,是阿里巴巴首个统一的商家数据产品平台,为中小企业商家提供数据披露、分析、诊断、建议、优化、预测等多项数据服务。

另外,据百度公司的百度数智平台官网介绍,该平台定位为提供大规模机器学习、深度学习、数据分析及展现、数据应用等产品与服务,包括了大数据基础产品和大数据应用产品两大类,大数据基础产品包括大数据传输Minos、数据工厂Pingo、数据治理Dayu、数据分析与开发Jarvis、大数据可视化Habo等产品,大数据应用产品包括百度智客、百度觅客、百度汇客、百度客情、百度商情等产品,百度公司将其数智平台定位为AI时代的企业数据管家,服务于公司内部和各行业合作伙伴。

在2018年10月由中国联通大数据公司主办的加速-U10大数据价值峰会上,中国联通大数据公司负责人以“数智”为主题发表演讲,她认为当前大数据产业已经进入“数智”时代,联通大数据的数智升级,在于更大规模的数据、更深度的智能,打造数智新架构体系,做值得信赖的数据智能服务运营商,同时介绍了中国联通UBD数智中台的建设思路。

可以看出,以上代表性企业建设数据智能平台或数据中台的意义主要在于,一是帮助企业管理好内部现有的数据资产,即数据资产管理;二是为企业提供基于大数据的预测分析产品,即人工智能服务。数据资产管理的目的是为了准备和提供高质量的数据给人工智能应用,对数据的规范化和标准化是企业实现基于大数据提供智能化服务的关键,也是决定大数据价值实现的基础。

大数据进入下半场,人工智能已然崛起,现有的大数据技术亟须和人工智能技术结合,孕育新的产业生态,从百度、阿里和中国联通的做法可以看出,向数据智能型企业转型正在成为大型科技企业新的行动方向,阿里巴巴提出的“大中台、小前台”的做法已经成为业界主流数字化转型思路,企业通过建设数据智能平台或数据中台,打破内部数据壁垒、盘活数据资产、提升数据价值,对外提供统一的智能化数据服务,有望再次重构大数据产业生态环境,进一步深挖和释放大数据的价值红利。

相关阅读:

大数据相关的十大技术

大数据处理的关键技术及应用

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读