设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 大数据 > 正文

大数据在保险行业的应用(3)

发布时间:2018-12-18 17:13 所属栏目:125 来源:公众账号
导读:举个例子,公司内在做人员画像分析的时候,人员的数据和岗位的数据使用什么样的方式可以结合起来?人员的数据会以什么样的方式影响到他所在岗位的绩效?这能不能写个sql,编一段规则,或者写个python程序算出来呢?

举个例子,公司内在做人员画像分析的时候,人员的数据和岗位的数据使用什么样的方式可以结合起来?人员的数据会以什么样的方式影响到他所在岗位的绩效?这能不能写个sql,编一段规则,或者写个python程序算出来呢?不行,只能借助机器学习了。

公司里在做人员分析的时候,其实大量用到机器学习的方法。只是这些分析都是独立的,针对特定场景进行的一次性分析,没有能够集成到现有的应用或平台中去。

数据的展现技术

主要是数据展现相关的技术,数据可视化,多维度展现,数据展现和数据探索结合。

展示出来的数据是数据服务的最终交付物,无论前面怎么采集存储分析,最终起作用的是呈现出来的部分。所以会做ppt才是王道。

作为数据分析工程师,使用数据的部分往往意味着前端展示技术。传统的BI系统里的数据展示在大数据的时代过时了吗?有哪些不同呢?我个人感觉,就外观来说,没什么不同,各种大屏展示,现在流行的说法是驾驶舱。

但是在这样外观下,大数据的数据展示至少有两点不同:

一是传统数据很多普遍为T+5,好一点的可以实现T+1,但大数据都是展示实时数据;

二是数据展示和数据探索往往会结合在一起。

这两点要求,传统的BI系统就不容易实现了,需要利用到大数据平台作为支撑,才能提供实时的数据查询展示,展示的数据可以实时下钻,发现一个指标的关联指标。

保险大数据分析的应用场景

就目前保险行业而言,就算完全不使用大数据技术,对保险行业的日常运营来说,没有任何影响,但是如果不使用大数据技术,那么对未来的运营,一定会有很大的影响。我们在这一部分,聊一聊保险行业里大数据分析的应用场景。

数据的安全合规

首先第一个场景,也是最重要的,就是 数据的安全合规 。

这里说的监管指的是数据上的监管,不是经营上的监管。金融行业受到严格监管,而且这种监管的力度是越来越强的。

监管的手段随着技术的进步在不断推进,所以金融机构本身也就必须要跟得上才行,一旦落后,就意味着违规。

最常见的两类监管:

一个是保监会和行业协会对保单数据的监管,

二是央行的反洗钱数据监管。

监管的方式是要求保险公司上报数据,按照指定的规格上报数据。有的是每天上报,有的是不定期的现场检查。

监管机构对数据的要求是不会考虑各个公司自己数据的组织形式的,他们会定义自己想要的数据结构和数据内容,被监管的机构有义务将自己的数据整理成监管机构想要的样子。

一两年前这其实也不是太大的问题,开发一些ETL就足够满足需求了。但是,数据监管的要求更新很快,每年都会更新,对数据需求的范围和复杂程度两方面的增加,对于开发ETL来说,复杂度不是线性增长的,而是要增长得更快。

ETL要做的工作,元数据管理,数据质量管理,最好都挪到大数据技术栈上来,不要再依赖传统的数据库,不依赖开发SQL和ETL。

应对监管是被动的,从主动的方面来说,需要用大数据技术来促进业绩提升。最明显的例子就是客户分析。

保险行业最初是不太经营客户的概念,和银行业不太一样,银行业的所有业务和核心系统都是围绕客户、账户来的,而保险行业的核心系统都是围绕保单来的。但是事实上保险行业现在非常需要围绕客户来进行经营。

在没有大数据分析之前,经营客户主要靠代理人通过线下的方式去维护和调查,而现在可以对客户数据进行整理和分析,例如用户画像,客户360分析,等等。这些都是大数据流行用语。

话说回来,我想说的是客户分析是一个可以提升业绩的典型场景。目前的保险代理人和电话销售,背后都有大数据的支持。

开拓新业务

另一个应用场景,是 拓展新业态,规划新格局 —— 不是对现有的业务进行提升,而是大数据技术可以为企业拓展出新的业务。

很多企业都有这样的打算,就是把数据转化为数据服务,把这种服务提供出来。

那这是不是卖数据呢?大家不要紧张,不是卖数据。用户隐私数据是很敏感的,金融行业对这些数据的控制非常严格,也绝对不会去出售数据。 但是出售数据服务是可以的,而且也是大数据分析要干的事儿。

举个例子,但这不是保险公司,是银保监会的保单登记平台,这个平台的作用是让所有保险公司将自己的保单登记进来。

各个保险公司的保单数据在这个平台上就打通了。但是各家的数据肯定是不能给其他家看的了,但是保单登记平台有了所有的数据后,可以基于这些数据提供风险提示服务给各家保险公司。

比如有人在A保险公司投保的时候,A保险公司就可以查询一下这个人是不是在不同的保险公司重复投了保,如果是的话,那么承保的风险就比较高。

在准备这次分享的时候,我想要能找到一个保险公司对外提供数据服务的例子,但是直到

现在都没有想出来,看来数据服务本身还是比较敏感,服务模式也不太成熟,大部分停留在对内服务阶段,还远没有达到拓展出公司新业态的程度。

技术与业务的有机结合

技术要落地,在业务场景里落地,要成为可以交付的产品,要实际用起来才行。所以最后一部分,和大家聊聊技术怎么落地,落在什么位置。

无论是不是大数据分析系统,对于所有的系统来说,我们都希望有一个敏捷的前台、强大的中台和稳定的后台。

前台 能够快速响应需求,快速交付价值,充分利用中台的服务,快速托拉拽就生成一个展示系统。

比如说,中台有一套强大的指标管理系统,提供实时查询服务,那么生成报表这样的前台应用就能迅速创建出来了。

而对 中台 的期望呢,是够强大,对外要能提供出足够多的服务来,自己内部又要把对后台的访问充分地封装。

而 后台 呢,要稳定可靠,不存在任何性能上的瓶颈,能满足中台所有的计算或者存储请求。

这是对于单个系统而言的三个层级,对于多个系统来说,我们希望有统一的后台,统一的中台,加上多个灵活的前台。

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读