设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 大数据 > 正文

完美的优化效果,人工智能的盲点

发布时间:2022-03-01 14:34 所属栏目:125 来源:互联网
导读:人工智能(AI)系统的脆弱性一直被行业人员所诟病,稍微的数据错误就会使系统发生故障。例如在图像识别中,图片微小的像素改变,不会干扰人类视觉,但机器可能会发生紊乱。正如CVPR 2017论文中所论述的那样修改一个像素,就能让神经网络识别图像出错。 至于原
  人工智能(AI)系统的脆弱性一直被行业人员所诟病,稍微的数据错误就会使系统发生故障。例如在图像识别中,图片微小的像素改变,不会干扰人类视觉,但机器可能会发生紊乱。正如CVPR 2017论文中所论述的那样“修改一个像素,就能让神经网络识别图像出错”。
  
  至于原因,研究人员有过很多探究:数据不够好,算法设计不精妙....近日,在科技媒体wired上,计算机科学家Erik J. Larson撰文表示:优化思维是AI脆弱性的根源。(译者注:这里的优化思维,也可以翻译成“追求足够好”、追求完美AI)
 
  
 
  1
 
  优化的脆弱性
  人类不是一个优化者,过去几万年大脑本身也并没有进化出完美优化的功能。大脑是轻量级的,从不追求100%的准确性,并能够从小数据中得出假设。
 
  换句话说,大脑满足于在“门槛”上混日子,如果1%的准确率就能让它生存,那么这就是大脑所需要的准确率。但这种最小生存策略也会导致认知偏见,让人们思维封闭、鲁莽、宿命论、恐慌。
 
  AI严格的数据驱动训练方法能有效避免这种认知偏见,却也让其陷入“过度纠正”。确实,对人类而言,好的心态能够抵御完美主义带来的破坏性影响,一个不那么神经质的大脑已经帮助我们在“生活的冲撞和摇摆”中茁壮成长。
  
 
  2
 
  构建AI直面不确定性
  五百年前,实用主义大师尼科勒·马基雅维利指出,世俗的成功需要一种反直觉的勇气。对于聪明人来说,大部分不存在的知识将是不必要的;生活往往不会符合我们的预期。因此,人类可以改变对模糊性的处理方式。
 
  例如当AI遇到单词suit时,它会通过分析更多的信息来确定该单词是表示衣服,还是法律名词。分析更多信息通常意味着利用大数据缩小答案范围,这在99.9%的情况下有效,剩下的0.1%,AI仍然会“自信”的将suit表示为法律名词,但实际上它是衣服。
 
  因此,AI应该有足够大的答案范围。研究人员在设计AI时候,应该允许“模棱两可”,并将模糊选项代入后续任务中,就像人类能够读懂一首诗歌的多个潜在含义一样。如果下游任务不允许“模棱两可”的存在,这时设计的AI应该能请求人类的帮助,让人类代替它进行决策。
 
 
  3
 
  用数据作为灵感来源
  目前的AI希望通过大数据的发散性思维实现创造。但众多科学研究显示,生物的创造力往往涉及无数据和非逻辑过程。因此,依靠大数据或许能够批量创造出许多“新”作品,但这些作品仅限于历史数据的混合和匹配。换句话说,大规模的发散性思维的产生必然伴随着低质量。
 
  数据驱动的创造所产生的局限性可以从GPT-3以及Artbreeder等文本和图像生成器中看到。通过“观察”历史场景,然后添加专家意见,试图产生下一个梵高。但结果往往是这位“梵高”只能复制以前画家的作品。这种AI设计文化,显然误解了创新的含义。这种情况从大家对FaceNet的盛誉中可见一斑,因为有一些面部识别的创新,仍然是蛮力优化。可以类比为调整汽车的扭矩带增加汽车性能,并称其为汽车交通革命。
  
  4
 
  人机结合
  将人脑融入AI听起来很科幻,短期内很难有大的进展,但我们可以另辟蹊径,设计友好的人机关系。当前人与机器的合作关系并没有发挥它应有的作用,人类要么充当机器的保姆,要么充当AI系统更新的附属品。前者意味着乏味、枯燥,后者意味着被动。如何解决?当前的工作重点已经关注三个方面:
 
  1.攻关科研,让AI有能力“知道”它何时缺少训练数据。换句话说,追求正确的AI,不如追求让AI知道自己何时不正确,赋予AI认知自己的智慧。人类的大脑无法拥有计算机的数据处理速度,所以当无知的算法认为自己无所不能的时候,人类的干预总是太晚。因此,应该通过编程让“傻瓜”发现自己是“傻瓜”。
 
  2. 完善人机交互界面。因追求优化而造成的不透明设计,即黑盒算法。交互设计应该消除黑盒性质,例如将刚性按钮(只有一个选项)替换成包含概率的选项,标明第一个选项的可能性为70%,第二个选项的可能性为20%,第三个选项的可能性为5%,以此类推。如果没有满意的选项,那么就要求AI重新定向,或者进行手动操作,以最大的限度提高计算机的逻辑和人类的主动性。
  

(编辑:ASP站长网)

    网友评论
    推荐文章
      热点阅读