设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 手机 数据 公司
当前位置: 首页 > 大数据 > 正文

从0到1创建智能灰度数据体系 以vivo游戏中心为例

发布时间:2022-08-23 13:06 所属栏目:125 来源:互联网
导读:本文介绍了vivo游戏中心在灰度数据分析体系上的实践经验,从实验思想-数学方法-数据模型-产品方案四个层面提供了一套较为完整的智能灰度数据解决方案,以保障版本评估的科学性、项目进度以及灰度验证环节的快速闭环。该方案的亮点在于,指标异动根因分析方法
  本文介绍了vivo游戏中心在灰度数据分析体系上的实践经验,从“实验思想-数学方法-数据模型-产品方案”四个层面提供了一套较为完整的智能灰度数据解决方案,以保障版本评估的科学性、项目进度以及灰度验证环节的快速闭环。该方案的亮点在于,指标异动根因分析方法的引入和全流程自动化产品方案的设计。
 
  一、引言
  游戏业务的用户规模体量大,业务链路长,数据逻辑繁杂。游戏中心作为游戏业务平台端的核心用户产品,版本迭代非常频繁,每次版本上线前都必须进行小量级的灰度验证。2021年以来,平均每1~2周都会有重要版本开始灰度,而且线上有时会同时有多个版本在灰度测试。

  二、灰度数据体系的发展
  2.1 什么是灰度发版
  当游戏中心开发了全新的首页界面,应该如何验证新的首页是否被用户所接受,并且功能是否完善、性能是否稳定?
 
  答:灰度发版。就是在新版本推送给全量用户使用之前,按照一定策略选取部分用户,让他们先行体验新版首页,以获得他们关于“新的首页好用或不好用”以及“如果不好用,是哪里出了问题”的使用反馈。如果出现重大问题,则及时回滚旧版本;反之则根据反馈结果进行查漏补缺,并适时继续放大新版本投放范围直至全量升级。
 
  2.2 灰度评估方案发展阶段
  判断灰度发版是否科学的关键在于控制变量,这一问题的解决过程,也是灰度评估方案迭代和发展的过程。

  阶段一:确保了对比的时间相同,但升级速度差异意味着优先升级的用户和未升级的用户非同质用户,未能规避样本差异对数据结果差异的影响。
 
  阶段二:确保了对比的人群相同,但用户行为可能随时间而变化,无法剔除前后时间因素的差异。
 
  2.3  vivo游戏中心的做法
  我们搭建了“游戏中心智能灰度数据体系”,并通过三版迭代逐步解决了本文开头提到的3个问题。数据体系由指标检验结果、维度下钻解读、用户属性校验、指标异常诊断等主题看板以及自动化推送的灰度结论报告组成。
 
  完整方案部署上线后,基本实现了灰度评估阶段的自动化数据生产、效果检验、数据解读和决策建议的闭环,极大地释放了人力。
 
  三、灰度数据体系中的方法论
  在介绍数据方案设计前,先介绍一下灰度数据体系中涉及的背景知识和方法论,帮助大家更好地理解本文。
 
  3.1 灰度实验
  灰度实验包括抽样和效果检验两个部分,对应的是假设检验的思想以及样本历史差异性验证。
 
  3.1.1 假设检验
  假设检验是先对总体参数提出一个假设值,然后利用样本表现判断这一假设是否成立。

  3.1.2 样本历史差异性验证
  虽然灰度前事先已通过hash算法进行抽样,但由于抽样的随机性,一般会在统计检验和效果检验的同时,对样本的历史差异性进行验证,剔除样本本身差异带来的指标波动。灰度周期通常为7天,我们采用了7天滑动窗口取样的方法。

(编辑:ASP站长网)

    网友评论
    推荐文章
      热点阅读