金融科技助个人企业信用清晰 融合各行大数据是基石(2)
傅春告诉记者,目前上海市社会信用促进中心已成立信用大数据联合实验室,实验室主要从业务场景、社会应用、制度建设、产业发展等四个方面开展工作,对信用大数据应用产品建模、交易规则和定价等一系列相关问题进行探索、促进信用大数据新产品、新服务和新技术的研发。同时,实验室也着手专门研究跨行业和领域的信用信息共享的相关标准。 银行的努力 为了打破数据孤岛对个人企业信用状况评估准确性的制约,传统银行也在尝试融合不同领域数据。 一位国有大型银行零售业务部门主管向记者表示,当前银行在研发针对小微企业与个人的消费贷款产品方面也遇到数据瓶颈。究其原因,银行内部主要汇聚个人或企业的金融信息,对他们公共事业缴费、社交网站行为等数据缺乏了解,难以全面了解他们生活行为特征,导致消费信贷产品风险定价未必精准。 因此这些年他所在的银行开始尝试引入第三方数据,比如通过与第三方机构合作“获取”企业纳税信息与公共事业缴费,从而判断企业在贷款存续期间的经营状况;近日他们还开展与政府相关部门合作,通过获取企业员工的社保基金缴费数据,侧面了解企业员工薪资水平涨跌,进而判断企业的业务发展状况好坏。 记者多方了解到,为了持续提升个人企业信用状况评估准确性,部分银行正与当地法院与公安机关展数据合作,将失信个人与企业等公开资料信息纳入贷款风险评估模型,一旦贷款企业与这些失信人(或企业)存在业务往来,银行风控模型将迅速提示潜在的贷款风险。 这位国有大型银行零售业务部门主管坦言,尽管银行积极尝试引入不同领域行业数据,但当前被银行采纳的数据占比并不高。究其原因,一是银行担心数据来源的合规性,比如部分金融科技平台利用爬虫技术“采集”借款人大量个人隐私信息。但这些隐私信息需要个人授权才能使用,因此银行担心一旦个人问责,银行也会受到牵连;二是数据局限性比较强,比如不少场景服务方所提供的数据仅限于特定的消费场景,一旦离开特定消费场景,其使用效果就大打折扣。 “这背后,也折射出银行自身风控模型开发不足的短板。”他指出。要解决这个瓶颈,还需要银行加大引入不同领域行业数据,在加大风控模型研发投入同时采取系统化操作方式持续压低运营成本,从而塑造自身消费贷款业务核心竞争力。 “不过,即便融合大量不同行业领域数据,银行风控模型能否见效,仍是未知数。”多位业内人士透露,这考验着数据采集的质量。事实上,相比个人消费者的数据与用户画像相对容易获取,不少小微企业数据往往难以连续有效,且无法通过现场调查了解企业真实的经营状况,因此银行要健全小微企业的大数据风控模型,除了引入员工社保基金缴费、企业水电费与企业缴税等数据,还需要结合各个行业最新数据对行业发展前景进行研判,从而提前洞察不同地域不同行业潜在的经营风险,才能最大限度提升相关企业信用评估的准确性全面性。 相关阅读: 首次支持国际赛事,搜狗如何为AI同传正名? 大数据+互金创业公司赛富科技破产清算 获法院受理 中国已诞生14只AI“独角兽” 总估值达405亿美元 (编辑:ASP站长网) |