设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 大数据 > 正文

「高度」《人工智能标准化白皮书(2018)》发布(完整版)(3)

发布时间:2018-04-01 19:05 所属栏目:125 来源:站长网
导读:人工智能的定义对人工智能学科的基本思想和内容作出了解释,即围绕智能活动而构造的人工系统。人工智能是知识的工程,是机器模仿人类利用知识完成 一定行为的过程。根据人工智能是否能真正实现推理、思考和解决问题

人工智能的定义对人工智能学科的基本思想和内容作出了解释,即围绕智能活动而构造的人工系统。人工智能是知识的工程,是机器模仿人类利用知识完成 一定行为的过程。根据人工智能是否能真正实现推理、思考和解决问题,可以将 人工智能分为弱人工智能和强人工智能。

弱人工智能是指不能真正实现推理和解决问题的智能机器,这些机器表面看 像是智能的,但是并不真正拥有智能,也不会有自主意识。迄今为止的人工智能 系统都还是实现特定功能的专用智能,而不是像人类智能那样能够不断适应复杂 的新环境并不断涌现出新的功能,因此都还是弱人工智能。目前的主流研究仍然 集中于弱人工智能,并取得了显著进步,如语音识别、图像处理和物体分割、机 器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。

强人工智能是指真正能思维的智能机器,并且认为这样的机器是有知觉的和 自我意识的,这类机器可分为类人(机器的思考和推理类似人的思维)与非类人 (机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式) 两大类。从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、 具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能”。 强人工智能不仅在哲学上存在巨大争论(涉及到思维与意识等根本问题的讨论), 在技术上的研究也具有极大的挑战性。强人工智能当前鲜有进展,美国私营部门 的专家及国家科技委员会比较支持的观点是,至少在未来几十年内难以实现。

靠符号主义、连接主义、行为主义和统计主义这四个流派的经典路线就能设 计制造出强人工智能吗?其中一个主流看法是:即使有更高性能的计算平台和更 大规模的大数据助力,也还只是量变,不是质变,人类对自身智能的认识还处在 初级阶段,在人类真正理解智能机理之前,不可能制造出强人工智能。理解大脑 产生智能的机理是脑科学的终极性问题,绝大多数脑科学专家都认为这是一个数 百年乃至数千年甚至永远都解决不了的问题。

通向强人工智能还有一条“新”路线,这里称为“仿真主义”。这条新路线 通过制造先进的大脑探测工具从结构上解析大脑,再利用工程技术手段构造出模 仿大脑神经网络基元及结构的仿脑装置,最后通过环境刺激和交互训练仿真大脑 实现类人智能,简言之,“先结构,后功能”。虽然这项工程也十分困难,但都 是有可能在数十年内解决的工程技术问题,而不像“理解大脑”这个科学问题那 样遥不可及。

仿真主义可以说是符号主义、连接主义、行为主义和统计主义之后的第五个 流派,和前四个流派有着千丝万缕的联系,也是前四个流派通向强人工智能的关 键一环。经典计算机是数理逻辑的开关电路实现,采用冯•诺依曼体系结构,可以作为逻辑推理等专用智能的实现载体。但要靠经典计算机不可能实现强人工智能。要按仿真主义的路线“仿脑”,就必须设计制造全新的软硬件系统,这就是 “类脑计算机”,或者更准确地称为“仿脑机”。“仿脑机”是“仿真工程”的 标志性成果,也是“仿脑工程”通向强人工智能之路的重要里程碑。

  • 2.2 人工智能的特征

(1)由人类设计,为人类服务,本质为计算,基础为数据。从根本上说, 人工智能系统必须以人为本,这些系统是人类设计出的机器,按照人类设定的程 序逻辑或软件算法通过人类发明的芯片等硬件载体来运行或工作,其本质体现为 计算,通过对数据的采集、加工、处理、分析和挖掘,形成有价值的信息流和知 识模型,来为人类提供延伸人类能力的服务,来实现对人类期望的一些“智能行 为”的模拟,在理想情况下必须体现服务人类的特点,而不应该伤害人类,特别 是不应该有目的性地做出伤害人类的行为。

(2)能感知环境,能产生反应,能与人交互,能与人互补。人工智能系统 应能借助传感器等器件产生对外界环境(包括人类)进行感知的能力,可以像人 一样通过听觉、视觉、嗅觉、触觉等接收来自环境的各种信息,对外界输入产生 文字、语音、表情、动作(控制执行机构)等必要的反应,甚至影响到环境或人 类。借助于按钮、键盘、鼠标、屏幕、手势、体态、表情、力反馈、虚拟现实/ 增强现实等方式,人与机器间可以产生交互与互动,使机器设备越来越“理解” 人类乃至与人类共同协作、优势互补。这样,人工智能系统能够帮助人类做人类 不擅长、不喜欢但机器能够完成的工作,而人类则适合于去做更需要创造性、洞 察力、想象力、灵活性、多变性乃至用心领悟或需要感情的一些工作。

(3)有适应特性,有学习能力,有演化迭代,有连接扩展。人工智能系统 在理想情况下应具有一定的自适应特性和学习能力,即具有一定的随环境、数据 或任务变化而自适应调节参数或更新优化模型的能力;并且,能够在此基础上通 过与云、端、人、物越来越广泛深入数字化连接扩展,实现机器客体乃至人类主体的演化迭代,以使系统具有适应性、鲁棒性、灵活性、扩展性,来应对不断变化的现实环境,从而使人工智能系统在各行各业产生丰富的应用。

  • 2.3 人工智能参考框架

目前,人工智能领域尚未形成完善的参考框架。因此,本章基于人工智能的 发展状况和应用特征,从人工智能信息流动的角度出发,提出一种人工智能参考 框架(如图 2 所示),力图搭建较为完整的人工智能主体框架,描述人工智能系 统总体工作流程,不受具体应用所限,适用于通用的人工智能领域需求。

「高度」《人工智能标准化白皮书(2018)》发布(完整版)

人工智能参考框架提供了基于“角色—活动—功能”的层级分类体系,从 “智能信息链”(水平轴)和“IT 价值链”(垂直轴)两个维度阐述了人工智 能系统框架。“智能信息链”反映从智能信息感知、智能信息表示与形成、智能 推理、智能决策、智能执行与输出的一般过程。在这个过程中,智能信息是流动 的载体,经历了“数据—信息—知识—智慧”的凝练过程。“IT 价值链”从人 工智能的底层基础设施、信息(提供和处理技术实现)到系统的产业生态过程, 反映人工智能为信息技术产业带来的价值。此外,人工智能系统还有其它非常重 要的框架构件:安全、隐私、伦理和管理。人工智能系统主要由基础设施提供者、 信息提供者、信息处理者和系统协调者 4 个角色组成。

(1)基础设施提供者

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读