设为首页 - 加入收藏 ASP站长网(Aspzz.Cn)- 科技、建站、经验、云计算、5G、大数据,站长网!
热搜: 重新 试卷 文件
当前位置: 首页 > 大数据 > 正文

「高度」《人工智能标准化白皮书(2018)》发布(完整版)(6)

发布时间:2018-04-01 19:05 所属栏目:125 来源:站长网
导读:在数据采集方面,语义理解通过自动构造数据方法和自动构造填空型问题的 方法来有效扩充数据资源。为了解决填充型问题,一些基于深度学习的方法相继 提出,如基于注意力的神经网络方法。当前主流的模型是利用神经网

在数据采集方面,语义理解通过自动构造数据方法和自动构造填空型问题的 方法来有效扩充数据资源。为了解决填充型问题,一些基于深度学习的方法相继 提出,如基于注意力的神经网络方法。当前主流的模型是利用神经网络技术对篇 章、问题建模,对答案的开始和终止位置进行预测,抽取出篇章片段。对于进一 步泛化的答案,处理难度进一步提升,目前的语义理解技术仍有较大的提升空间。

(3)问答系统

问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是 指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用 自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有 了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的 应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同 层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可 预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的 模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大 的非线性计算。

3.1.4 人机交互

人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算 机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、 操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术 除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑 机交互等技术,以下对后四种与人工智能关联密切的典型交互手段进行介绍。

(1)语音交互

语音交互是一种高效的交互方式,是人以自然语音或机器合成语音同计算机 进行交互的综合性技术,结合了语言学、心理学、工程和计算机技术等领域的知 识。语音交互不仅要对语音识别和语音合成进行研究,还要对人在语音通道下的 交互机理、行为方式等进行研究。语音交互过程包括四部分:语音采集、语音识 别、语义理解和语音合成。语音采集完成音频的录入、采样及编码;语音识别完 成语音信息到机器可识别的文本信息的转化;语义理解根据语音识别转换后的文 本字符或命令完成相应的操作;语音合成完成文本信息到声音信息的转换。作为 人类沟通和获取信息最自然便捷的手段,语音交互比其他交互方式具备更多优势, 能为人机交互带来根本性变革,是大数据和认知计算时代未来发展的制高点,具 有广阔的发展前景和应用前景。

(2)情感交互

情感是一种高层次的信息传递,而情感交互是一种交互状态,它在表达功能 和信息时传递情感,勾起人们的记忆或内心的情愫。传统的人机交互无法理解和 适应人的情绪或心境,缺乏情感理解和表达能力,计算机难以具有类似人一样的 智能,也难以通过人机交互做到真正的和谐与自然。情感交互就是要赋予计算机 类似于人一样的观察、理解和生成各种情感的能力,最终使计算机像人一样能进 行自然、亲切和生动的交互。情感交互已经成为人工智能领域中的热点方向,旨 在让人机交互变得更加自然。目前,在情感交互信息的处理方式、情感描述方式、 情感数据获取和处理过程、情感表达方式等方面还有诸多技术挑战。

(3)体感交互

体感交互是个体不需要借助任何复杂的控制系统,以体感技术为基础,直接 通过肢体动作与周边数字设备装置和环境进行自然的交互。依照体感方式与原理 的不同,体感技术主要分为三类:惯性感测、光学感测以及光学联合感测。体感 交互通常由运动追踪、手势识别、运动捕捉、面部表情识别等一系列技术支撑。与其他交互手段相比,体感交互技术无论是硬件还是软件方面都有了较大的提升, 交互设备向小型化、便携化、使用方便化等方面发展,大大降低了对用户的约束, 使得交互过程更加自然。目前,体感交互在游戏娱乐、医疗辅助与康复、全自动 三维建模、辅助购物、眼动仪等领域有了较为广泛的应用。

(4)脑机交互

脑机交互又称为脑机接口,指不依赖于外围神经和肌肉等神经通道,直接实 现大脑与外界信息传递的通路。脑机接口系统检测中枢神经系统活动,并将其转 化为人工输出指令,能够替代、修复、增强、补充或者改善中枢神经系统的正常 输出,从而改变中枢神经系统与内外环境之间的交互作用。脑机交互通过对神经 信号解码,实现脑信号到机器指令的转化,一般包括信号采集、特征提取和命令 输出三个模块。从脑电信号采集的角度,一般将脑机接口分为侵入式和非侵入式 两大类。除此之外,脑机接口还有其他常见的分类方式:按照信号传输方向可以 分为脑到机、机到脑和脑机双向接口;按照信号生成的类型,可分为自发式脑机 接口和诱发式脑机接口;按照信号源的不同还可分为基于脑电的脑机接口、基于 功能性核磁共振的脑机接口以及基于近红外光谱分析的脑机接口。

3.1.5 计算机视觉

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类 提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医 疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深 度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能 算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视 觉、动态视觉和视频编解码五大类。

(1)计算成像学

计算成像学是探索人眼结构、相机成像原理以及其延伸应用的科学。在相机 成像原理方面,计算成像学不断促进现有可见光相机的完善,使得现代相机更加 轻便,可以适用于不同场景。同时计算成像学也推动着新型相机的产生,使相机 超出可见光的限制。在相机应用科学方面,计算成像学可以提升相机的能力,从 而通过后续的算法处理使得在受限条件下拍摄的图像更加完善,例如图像去噪、去模糊、暗光增强、去雾霾等,以及实现新的功能,例如全景图、软件虚化、超 分辨率等。

(2)图像理解

(编辑:ASP站长网)

网友评论
推荐文章
    热点阅读